Urea nitrate

Urea nitrate
Structural formulae of the ions in urea nitrate
Ball-and-stick models of the ions in urea nitrate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.004.276 Edit this at Wikidata
UNII
  • InChI=1S/CH4N2O.HNO3/c2*2-1(3)4/h(H4,2,3,4);(H,2,3,4) ☒N
    Key: AYTGUZPQPXGYFS-UHFFFAOYSA-N ☒N
  • InChI=1/CH4N2O.HNO3/c2*2-1(3)4/h(H4,2,3,4);(H,2,3,4)
    Key: AYTGUZPQPXGYFS-UHFFFAOYAL
  • C(=O)(N)N.[N+](=O)(O)[O-]
Properties
CH5N3O4
Molar mass 123.068 g·mol−1
Density 1.67±0.011 g/cm3[1]
Melting point 157–159 °C (315–318 °F; 430–432 K)
167.2±0.5 mg/mL[1]
Solubility in Ethanol 14.2±0.1 mg/mL[1]
Solubility in Acetone 10.4±0.2 mg/mL[1]
Solubility in Methanol 54.8±0.9 mg/mL[1]
Explosive data
Shock sensitivity Low
Friction sensitivity Low
Detonation velocity 4700 m/s
Hazards
GHS labelling:
GHS01: Explosive GHS03: Oxidizing GHS05: Corrosive
Danger
H201, H271, H301, H304, H314, H332
P220, P233, P250, P260, P305+P351+P338
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazards (white): no code
2
1
3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Crystals of urea nitrate

Urea nitrate is a fertilizer-based high explosive that has been used in improvised explosive devices in Afghanistan, Pakistan, Iraq, and various terrorist acts elsewhere in the world such as in the 1993 World Trade Center bombings.[2] It has a destructive power similar to better-known ammonium nitrate explosives, with a velocity of detonation between 3,400 m/s (11,155 ft/s) and 4,700 m/s (15,420 ft/s).[3] It has chemical formula of CH5N3O4 or (NH2)2COHNO3.

Urea nitrate is produced in one step by reaction of urea with nitric acid. This is an exothermic reaction, so steps must be taken to control the temperature.

It was discovered in 1797 by William Cruickshank,[4] inventor of the Chloralkali process.

Urea nitrate explosions may be initiated using a blasting cap.[3]

  1. ^ a b c d e Oxley, Jimmie C.; Smith, James L.; Vadlamannati, Sravanthi; Brown, Austin C.; Zhang, Guang; Swanson, Devon S.; Canino, Jonathan (2013). "Synthesis and Characterization of Urea Nitrate and Nitrourea". Propellants, Explosives, Pyrotechnics. 38 (3): 335–344. doi:10.1002/prep.201200178.
  2. ^ Aaron Rowe (18 September 2007). "Chem Lab: Spray-On Test for Improvised Explosives". Wired.
  3. ^ a b "Explosives - ANFO (Ammonium Nitrate - Fuel Oil)". GlobalSecurity.org.
  4. ^ Rosenfeld, Louis (1999). Four Centuries of Clinical Chemistry. CRC Press. ISBN 978-90-5699-645-1.