User:Aarchiba/Technetium-experimental-note-1

molybdenumtechnetiumruthenium
Mn

Tc
Re 
 

General
Name, Symbol, Number technetium, Tc, 43
Chemical series Transition metals
Group, Period, Block 7, 5, d
Density, Hardness 11500 kg/m3, NA
Appearance 125px|
Silvery gray metallic
Atomic properties
Atomic mass [98] u
Atomic radius (calc.) 135 (183) pm
Covalent radius 156 pm
van der Waals radius no data
Electron configuration [Kr] 4d5 5s2
e- 's per energy level 2, 8, 18, 13, 2
Oxidation state 7 (strong acid)
Crystal structure Hexagonal
Physical properties
State of matter Solid (paramagnetic)
Melting point 2430 K (3915 °F)
Boiling point 5200 K (8900 °F)
(estimated)*
Molar volume 8.63 cm³/mol
Heat of vaporization 660 kJ/mol
Heat of fusion 24 kJ/mol
Vapor pressure 0.0229 Pa at 2473 K
Speed of sound no data
Miscellaneous
Electronegativity 1.9 (Pauling scale)
Electron affinity -53 kJ/mol
Specific heat capacity 210 J/(kg·K)
Electrical conductivity 6.7 MS/m
Thermal conductivity 50.6 W/(m·K)
1st ionization potential 702 kJ/mol
2nd ionization potential 1470 kJ/mol
3rd ionization potential 2850 kJ/mol
Most stable isotopes
iso NA half-life DM DE MeV DP
97Tc {syn.} 2.6 E6 y ε 0.320 97Mo
98Tc {syn.} 4.2 E6 y β- 1.796 98Ru
99Tc {syn.} 211,100 y β- 0.294 99Ru
SI units & STP are used except where noted.

Technetium is a chemical element in the periodic table that has the symbol Tc and atomic number 43. The chemical properties of this silvery gray, radioactive, crystalline transition metal are intermediate between rhenium and manganese and it is rarely found in nature. Its short-lived isotope Tc-99m is used in nuclear medicine to diagnose certain cancers, Tc-99 is used as a gamma ray-free source of beta rays, and its pertechnate ion could find use as a corrosion preventer for steel (this possible use is hindered by technetium's radioactivity).

Dmitri Mendeleev predicted many of the properties of element 43, which he called ekamanganese, well before its actual discovery (see Mendeleev's predicted elements). In 1937 its isotope Tc-97 became the first element to be artificially produced, hence its name (from the Greek technètos, meaning "artificial"). Most technetium produced on Earth is a by-product of fission of uranium-235 in nuclear reactors and is extracted from nuclear fuel rods. No isotope of technetium has a half life longer than 4.2 million years (Tc-98), so its detection in red giants in 1952 helped bolster the theory that stars can produce heavier elements.