In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon).
After developments in radar equipment for World War II resulted in higher accuracy for measuring the energy levels of the hydrogen atom, Isidor Rabi made measurements of the Lamb shift and the anomalous magnetic dipole moment of the electron. These effects corresponded to the deviation from the value −2 for the spectroscopic electron g-factor that are predicted by the Dirac equation. Later, Hans Bethe[1] theoretically calculated those shifts in the hydrogen energy levels due to vacuum polarization on his return train ride from the Shelter Island Conference to Cornell.
The effects of vacuum polarization have been routinely observed experimentally since then as very well-understood background effects. Vacuum polarization, referred to below as the one loop contribution, occurs with leptons (electron–positron pairs) or quarks. The former (leptons) was first observed in 1940s but also more recently observed in 1997 using the TRISTAN particle accelerator in Japan,[2] the latter (quarks) was observed along with multiple quark–gluon loop contributions from the early 1970s to mid-1990s using the VEPP-2M particle accelerator at the Budker Institute of Nuclear Physics in Siberia, Russia and many other accelerator laboratories worldwide.[3]