Vector fields on spheres

In mathematics, the discussion of vector fields on spheres was a classical problem of differential topology, beginning with the hairy ball theorem, and early work on the classification of division algebras.

Specifically, the question is how many linearly independent smooth nowhere-zero vector fields can be constructed on a sphere in -dimensional Euclidean space. A definitive answer was provided in 1962 by Frank Adams. It was already known,[1] by direct construction using Clifford algebras, that there were at least such fields (see definition below). Adams applied homotopy theory and topological K-theory[2] to prove that no more independent vector fields could be found. Hence is the exact number of pointwise linearly independent vector fields that exist on an ()-dimensional sphere.

  1. ^ James, I. M. (1957). "Whitehead products and vector-fields on spheres". Proceedings of the Cambridge Philosophical Society. 53 (4): 817–820. doi:10.1017/S0305004100032928. S2CID 119646042.
  2. ^ Adams, J. F. (1962). "Vector Fields on Spheres". Annals of Mathematics. 75 (3): 603–632. doi:10.2307/1970213. JSTOR 1970213. Zbl 0112.38102.