In mathematics, a versor is a quaternion of norm one (a unit quaternion). Each versor has the form
where the r2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions). The corresponding 3-dimensional rotation has the angle 2a about the axis r in axis–angle representation. In case a = π/2 (a right angle), then , and the resulting unit vector is termed a right versor.
The collection of versors with quaternion multiplication forms a group, and the set of versors is a 3-sphere in the 4-dimensional quaternion algebra.