The conjecture is usually attributed to Friedhelm Waldhausen in a paper from 1968,[1] although he did not formally state it. This problem is formally stated as Problem 3.2 in Kirby's problem list.
A proof of the conjecture was announced on March 12, 2012 by Ian Agol in a seminar lecture he gave at the Institut Henri Poincaré. The proof appeared shortly thereafter in a preprint which was eventually published in Documenta Mathematica.[2] The proof was obtained via a strategy by previous work of Daniel Wise and collaborators, relying on actions of the fundamental group on certain auxiliary spaces (CAT(0) cube complexes, also known as median graphs)[3]
It used as an essential ingredient the freshly-obtained solution to the surface subgroup conjecture by Jeremy Kahn and Vladimir Markovic.[4][5]
Other results which are directly used in Agol's proof include the Malnormal Special Quotient Theorem of Wise[6] and a criterion of Nicolas Bergeron and Wise for the cubulation of groups.[7]
In 2018 related results were obtained by Piotr Przytycki and Daniel Wise proving that mixed 3-manifolds are also virtually special, that is they can be cubulated into a cube complex with a finite cover where all the hyperplanes are embedded which by the previous mentioned work can be made virtually Haken.[8][9]