Volume-regulated anion channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane,[1] and that is not the only function these channels have been linked to. Some research has also suggested that VRACs may be water-permeable as well.[2]
The regulation of cell volume is necessary not only as a prevention against swelling or shrinkage caused by a change in the cell's environment, but also throughout all stages of a cell's life. The changing of a cell's volume, whether it be swelling or shrinkage, generally occurs without major changes, such as exocytic insertion or endocytic retrieval of the plasma membrane.[1] Instead, volume regulation mostly occurs through the transport of potassium, sodium, chloride, and organic osmolytes across the membrane.[1] The ramifications of cells not being able to regulate their volume size in relation to their environments are great as swelling leads to lysis, and shrinking eventually leads from dehydration to apoptosis.[3] The specific role that VRACs play in the regulation of cell volume specifically is regulatory volume decrease (RVD) of cells.[1]
Research of VRACs has led some to conclude that they are widely expressed in mammalian cells and that they may even be ubiquitously expressed.[4] VRACs have also been shown to participate in fundamental cellular processes other than basic volume regulation, such as cell proliferation, migration, and apoptosis.[5][6]
Mongin_2016
was invoked but never defined (see the help page).Inoue_2007
was invoked but never defined (see the help page).