Von Neumann cellular automaton

A simple configuration in von Neumann's cellular automaton. A binary signal is passed repeatedly around the blue wire loop, using excited and quiescent ordinary transmission states. A confluent cell duplicates the signal onto a length of red wire consisting of special transmission states. The signal passes down this wire and constructs a new cell at the end. This particular signal (1011) codes for an east-directed special transmission state, thus extending the red wire by one cell each time. During construction, the new cell passes through several sensitised states, directed by the binary sequence.

Von Neumann cellular automata are the original expression of cellular automata, the development of which was prompted by suggestions made to John von Neumann by his close friend and fellow mathematician Stanislaw Ulam. Their original purpose was to provide insight into the logical requirements for machine self-replication, and they were used in von Neumann's universal constructor.

Nobili's cellular automaton is a variation of von Neumann's cellular automaton, augmented with the ability for confluent cells to cross signals and store information. The former requires an extra three states, hence Nobili's cellular automaton has 32 states, rather than 29. Hutton's cellular automaton is yet another variation, which allows a loop of data, analogous to Langton's loops, to replicate.