Vroman effect

The Vroman effect, named after Leo Vroman, describes the process of competitive protein adsorption to a surface by blood serum proteins. The highest mobility proteins generally arrive first and are later replaced by less mobile proteins that have a higher affinity for the surface. The order of protein adsorption also depends on the molecular weight of the species adsorbing.[1] Typically, low molecular weight proteins are displaced by high molecular weight protein while the opposite, high molecular weight being displaced by low molecular weight, does not occur. A typical example of this occurs when fibrinogen displaces earlier adsorbed proteins on a biopolymer surface and is later replaced by high molecular weight kininogen.[2] The process is delayed in narrow spaces and on hydrophobic surfaces, fibrinogen is usually not displaced. Under stagnant conditions initial protein deposition takes place in the sequence: albumin; globulin; fibrinogen; fibronectin; factor XII, and HMWK.[3]

  1. ^ Noh, Hyeran; Vogler, Erwin A. (January 2007). "Volumetric Interpretation of Protein Adsorption: Competition from Mixtures and the Vroman Effect". Biomaterials. 28 (3): 405–422. doi:10.1016/j.biomaterials.2006.09.006. ISSN 0142-9612. PMC 2705830. PMID 17007920.
  2. ^ Horbett, Thomas A (October 2018). "Fibrinogen adsorption to biomaterials". Journal of Biomedical Materials Research. Part A. 106 (10): 2777–2788. doi:10.1002/jbm.a.36460. ISSN 1549-3296. PMC 6202247. PMID 29896846.
  3. ^ Vroman, L.; Adams, AL; Fischer, GC; Munoz, PC (1980). "Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces". Blood. 55 (1): 156–9. doi:10.1182/blood.V55.1.156.156. PMID 7350935.