In oncology, the Warburg effect (/ˈvɑːrbʊərɡ/) is the observation that most cancer use aerobic glycolysis for energy generation rather than the mechanisms used by non-cancerous cells.[1] This observation was first published by Otto Heinrich Warburg,[2] who was awarded the 1931 Nobel Prize in Physiology for his "discovery of the nature and mode of action of the respiratory enzyme".[3] The existence of the Warburg effect has fuelled popular misconceptions that cancer can be treated by dietary reductions in sugar and carbohydrate, according to an article in the Lancet.[1]
But there are numerous published articles that conclude the opposite, that dietary reductions in sugar and carbohydrate can treat and do increase apoptosis in cancer cells and that fasting could play a key role in cancer treatment.
[4][5][6][7]
Diagnostically the increased glucose consumption by cancer cells resulting from the Warburg effect is the basis for tumor detection in a PET scan, in which an injected radioactive glucose analog is detected at higher concentrations in malignant cancers than in other tissues.[9]
^ abCite error: The named reference mis was invoked but never defined (see the help page).
^Batra S, Adekola KU, Rosen ST, Shanmugam M (May 2013). "Cancer metabolism as a therapeutic target". Oncology. 27 (5). Williston Park, N.Y.: 460–467. PMID25184270.