Wavelet transform

An example of the 2D discrete wavelet transform that is used in JPEG2000

In mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.[1][2][3][4][5]

  1. ^ Meyer, Yves (1992), Wavelets and Operators, Cambridge, UK: Cambridge University Press, ISBN 0-521-42000-8
  2. ^ Chui, Charles K. (1992), An Introduction to Wavelets, San Diego, CA: Academic Press, ISBN 0-12-174584-8
  3. ^ Daubechies, Ingrid. (1992), Ten Lectures on Wavelets, SIAM, ISBN 978-0-89871-274-2
  4. ^ Akansu, Ali N.; Haddad, Richard A. (1992), Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets, Boston, MA: Academic Press, ISBN 978-0-12-047141-6
  5. ^ Ghaderpour, E.; Pagiatakis, S. D.; Hassan, Q. K. (2021). "A Survey on Change Detection and Time Series Analysis with Applications". Applied Sciences. 11 (13): 6141. doi:10.3390/app11136141. hdl:11573/1655273.