Whitehead's lemma (Lie algebra)

In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology.[1]

One usually makes the distinction between Whitehead's first and second lemma for the corresponding statements about first and second order cohomology, respectively, but there are similar statements pertaining to Lie algebra cohomology in arbitrary orders which are also attributed to Whitehead.

The first Whitehead lemma is an important step toward the proof of Weyl's theorem on complete reducibility.

  1. ^ Jacobson 1979, p. 93