Wilkinson's catalyst

Wilkinson's catalyst
Wilkinson's catalyst
Wilkinson's catalyst
Wilkinson's catalyst
Wilkinson's
Names
IUPAC name
(SP-4)-chlorido­tris(triphenylphosphene)­rhodium
Other names
Rhodium(I) tris(triphenylphosphene) chloride,
Wilkinson's catalyst,
Tris(triphenylphosphene)­rhodium(I) chloride
Identifiers
3D model (JSmol)
ECHA InfoCard 100.035.207 Edit this at Wikidata
EC Number
  • 238-744-5
RTECS number
  • none
UNII
  • InChI=1S/3C18H15P.ClH.Rh/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;/h3*1-15H;1H;/p-1
    Key: QBERHIJABFXGRZ-UHFFFAOYSA-M
  • Cl[Rh-3]([P+](c0ccccc0)(c0ccccc0)c0ccccc0)([P+](c0ccccc0)(c0ccccc0)c0ccccc0)[P+](c0ccccc0)(c0ccccc0)c0ccccc0
Properties
C54H45ClP3Rh
Molar mass 925.22 g/mol
Appearance red solid
Melting point 245 to 250 °C (473 to 482 °F; 518 to 523 K)
insoluble in water
Solubility in other solvents 20 g/L (CHCl3, CH2Cl2), 2 g/L (benzene, toluene)[1]
Structure
square planar d8 (diamagnetic; sp2d-hybridized)
Hazards[2]
Occupational safety and health (OHS/OSH):
Main hazards
none
GHS labelling:
GHS07: Exclamation mark
Warning
H302, H317, H413
P261, P264, P270, P272, P273, P280, P301+P312, P302+P352, P330, P333+P313, P363, P501
Related compounds
Related compounds
triphenylphosphene
Pd(PPh3)4
IrCl(CO)[P(C6H5)3]2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Wilkinson's catalyst (chlorido­tris(triphenylphosphine)­rhodium(I)) is a coordination complex of rhodium with the formula [RhCl(PPh3)], where 'Ph' denotes a phenyl group. It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane. The compound is widely used as a catalyst for hydrogenation of alkenes. It is named after chemist and Nobel laureate Sir Geoffrey Wilkinson, who first popularized its use.

Historically, Wilkinson's catalyst has been a paradigm in catalytic studies leading to several advances in the field such as the implementation of some of the first heteronuclear magnetic resonance studies for its structural elucidation in solution (31P),[3] parahydrogen-induced polarization spectroscopy to determine the nature of transient reactive species,[4] or one of the first detailed kinetic investigation by Halpern to elucidate the mechanism.[5] Furthermore, the catalytic and organometallic studies on Wilkinson's catalyst also played a significant role on the subsequent development of cationic Rh- and Ru-based asymmetric hydrogenation transfer catalysts which set the foundations for modern asymmetric catalysis.[6]

  1. ^ Cite error: The named reference IS was invoked but never defined (see the help page).
  2. ^ "Chlorotris(triphenylphosphine)rhodium(I)". pubchem.ncbi.nlm.nih.gov.
  3. ^ Meakin, P.; Jesson, J. P.; Tolman, C. A. (1 May 1972). "Nature of chlorotris(triphenylphosphene)rhodium in solution and its reaction with hydrogen". Journal of the American Chemical Society. 94 (9): 3240–3242. doi:10.1021/ja00764a061. ISSN 0002-7863.
  4. ^ Duckett, Simon B.; Newell, Connie L.; Eisenberg, Richard (1994). "Observation of New Intermediates in Hydrogenation Catalyzed by Wilkinson's Catalyst, RhCl(PPh3)3, Using Parahydrogen-Induced Polarization". Journal of the American Chemical Society. 116 (23): 10548–10556. doi:10.1021/ja00102a023.
  5. ^ Halpern, Jack (1 January 1981). "Mechanistic aspects of homogeneous catalytic hydrogenation and related processes". Inorganica Chimica Acta. 50: 11–19. doi:10.1016/S0020-1693(00)83716-0.
  6. ^ Hartwig, John F. (2010). Organotransition metal chemistry- From bonding to Catalysis. University Science Books. ISBN 978-1-891389-53-5.