Wind turbine prognostics

Early small scale onshore Wind Turbines

The growing demand for renewable energy has resulted in global adoption and rapid expansion of wind turbine technology. Wind Turbines are typically designed to reach a 20-year life,[1] however, due to the complex loading and environment in which they operate wind turbines rarely operate to that age without significant repairs and extensive maintenance during that period.[2] In order to improve the management of wind farms there is an increasing move towards preventative maintenance as opposed to scheduled and reactive maintenance to reduce downtime and lost production. This is achieved through the use of prognostic monitoring/management systems.

Typical Wind Turbine architecture consists of a variety of complex systems such as multi stage planetary gear boxes, hydraulic systems and a variety of other electro-mechanical drives. Due to the scale of some mechanical systems and the remoteness of some sites, wind turbine repairs can be prohibitively expensive and difficult to co-ordinate resulting in long periods of downtime and lost production.

As typical wind turbine capacity is expected to reach over 15MW is coming years[3] combined with the inaccessibility of Offshore wind farms, the use prognostic method is expected to become even more prevalent within the industry.

Modern Large Scale Offshore Wind Farm

Wind Turbine prognostics is also referred to as Asset Health Management, Condition Monitoring or Condition Management.

  1. ^ "DNV certification guidelines". DNV GL. 2010.
  2. ^ "Why wind-turbine gearboxes fail to hit the 20-year mark". Windpower Engineering & Development. Retrieved 2020-02-19.
  3. ^ "Next-Generation Wind Technology". Energy.gov. Retrieved 2020-02-19.