X-ray reflectivity

X-ray reflectivity (sometimes known as X-ray specular reflectivity, X-ray reflectometry, or XRR) is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers.[1][2][3][4][5] It is a form of reflectometry based on the use of X-rays and is related to the techniques of neutron reflectometry and ellipsometry.

Diagram of x-ray specular reflection

The basic principle of X-ray reflectivity is to reflect a beam of X-rays from a flat surface and to then measure the intensity of X-rays reflected in the specular direction (reflected angle equal to incident angle). If the interface is not perfectly sharp and smooth then the reflected intensity will deviate from that predicted by the law of Fresnel reflectivity. The deviations can then be analyzed to obtain the density profile of the interface normal to the surface.

  1. ^ J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, Wiley, New York, (2001).
  2. ^ "Open Reflectometry Standards Organisation | Open Reflectometry Standards Organisation". www.reflectometry.org. Retrieved 2024-09-23.
  3. ^ J. Daillant, A. Gibaud, X-Ray and Neutron Reflectivity: Principles and Applications. Springer, (1999).
  4. ^ M. Tolan, X-Ray Scattering from Soft-Matter Thin Films, Springer, (1999).
  5. ^ Holý, V.; Kuběna, J.; Ohlídal, I.; Lischka, K.; Plotz, W. (1993-06-15). "X-ray reflection from rough layered systems". Physical Review B. 47 (23). American Physical Society (APS): 15896–15903. Bibcode:1993PhRvB..4715896H. doi:10.1103/physrevb.47.15896. ISSN 0163-1829. PMID 10005989.