Country of origin | China |
---|---|
First flight | Long March 5 inaugural flight (2016-11-03) |
Designer | Academy of Aerospace Liquid Propulsion Technology |
Application | sustainer engine |
Associated LV | Long March 5 |
Status | In service |
Liquid-fuel engine | |
Propellant | Liquid oxygen / Liquid hydrogen |
Mixture ratio | 5.5 (adjustable) |
Cycle | Gas-generator |
Configuration | |
Chamber | 1 |
Nozzle ratio | 49 |
Performance | |
Thrust, vacuum | 700 kN (160,000 lbf) |
Thrust, sea-level | 518 kN (116,000 lbf) |
Chamber pressure | 10.1 MPa (1,460 psi) |
Specific impulse, vacuum | 428.0 seconds (4.197 km/s) |
Specific impulse, sea-level | 316.7 seconds (3.106 km/s) |
Burn time | 525 seconds (8.75 min) |
Dimensions | |
Length | 2,600 mm (100 in) (with rack) |
Diameter | 1,500 mm (59 in) |
Used in | |
Long March 5 core stage. | |
References | |
References | [1][2][3] |
The YF-77 is China's first cryogenic rocket engine developed for booster applications. It burns liquid hydrogen fuel and liquid oxygen oxidizer using a gas generator cycle. A pair of these engines powers the LM-5 core stage. Each engine can independently gimbal in two planes.[1][4] Although the YF-77 is ignited prior to liftoff, the LM-5's four strap-on boosters provide most of the initial thrust in an arrangement similar to the European Vulcain on the Ariane 5 or the Japanese LE-7 on the H-II.
wang-2013
was invoked but never defined (see the help page).nan-2013
was invoked but never defined (see the help page).rp
was invoked but never defined (see the help page).sd-lm5
was invoked but never defined (see the help page).