This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (January 2013) |
In complexity theory, ZPP (zero-error probabilistic polynomial time) is the complexity class of problems for which a probabilistic Turing machine exists with these properties:
In other words, if the algorithm is allowed to flip a truly-random coin while it is running, it will always return the correct answer and, for a problem of size n, there is some polynomial p(n) such that the average running time will be less than p(n), even though it might occasionally be much longer. Such an algorithm is called a Las Vegas algorithm.
Alternatively, ZPP can be defined as the class of problems for which a probabilistic Turing machine exists with these properties:
The two definitions are equivalent.
The definition of ZPP is based on probabilistic Turing machines, but, for clarity, note that other complexity classes based on them include BPP and RP. The class BQP is based on another machine with randomness: the quantum computer.