Zeaxanthin

Zeaxanthin
Structural formula of zeaxanthin
Space-filling model of the zeaxanthin molecule
Names
IUPAC name
(3R,3′R)-β,β-Carotene-3,3′-diol
Systematic IUPAC name
(1R,1′R)-4,4′-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-Tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaene-1,18-diyl]bis(3,5,5-trimethylcyclohex-3-en-1-ol)
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.005.125 Edit this at Wikidata
E number E161h (colours)
UNII
  • InChI=1S/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-24,35-36,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35-,36-/m1/s1 checkY
    Key: JKQXZKUSFCKOGQ-QAYBQHTQSA-N checkY
  • InChI=1/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-24,35-36,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35-,36-/m1/s1
    Key: JKQXZKUSFCKOGQ-QAYBQHTQBL
  • CC1=C(C(C[C@@H](C1)O)(C)C)/C=C/C(=C/C=C/C(=C/C=C/C=C(/C=C/C=C(/C=C/C2=C(C[C@H](CC2(C)C)O)C)\C)\C)/C)/C
Properties
C40H56O2
Molar mass 568.88 g/mol
Appearance orange-red
Melting point 215.5 °C (419.9 °F; 488.6 K)
insol.
Related compounds
Related compounds
lutein
xanthophyll
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Zeaxanthin is one of the most common carotenoids in nature, and is used in the xanthophyll cycle. Synthesized in plants and some micro-organisms, it is the pigment that gives paprika (made from bell peppers), corn, saffron, goji (wolfberries), and many other plants and microbes their characteristic color.[1][2]

The name (pronounced zee-uh-zan'-thin) is derived from Zea mays (common yellow maize corn, in which zeaxanthin provides the primary yellow pigment), plus xanthos, the Greek word for "yellow" (see xanthophyll).

Xanthophylls such as zeaxanthin are found in highest quantity in the leaves of most green plants, where they act to modulate light energy and perhaps serve as a non-photochemical quenching agent to deal with triplet chlorophyll (an excited form of chlorophyll) which is overproduced at high light levels during photosynthesis.[3] Zeaxanthin in guard cells acts as a blue light photoreceptor which mediates the stomatal opening.[4]

Animals derive zeaxanthin from a plant diet.[2] Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye. Zeaxanthin supplements are typically taken on the supposition of supporting eye health. Although there are no reported side effects from taking zeaxanthin supplements, the actual health effects of zeaxanthin and lutein are not proven,[5][6][7] and, as of 2018, there is no regulatory approval in the European Union or the United States for health claims about products that contain zeaxanthin.

As a food additive, zeaxanthin is a food dye with E number E161h.

  1. ^ Encyclopedia.com. "Carotenoids". Retrieved 6 May 2012.
  2. ^ a b "Lutein + Zeaxanthin Content of Selected Foods". Linus Pauling Institute, Oregon State University, Corvallis. 2014. Retrieved 20 May 2014.
  3. ^ Bassi, Roberto; Dall'Osto, Luca (2021). "Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms". Annual Review of Plant Biology. 72: 47–76. doi:10.1146/annurev-arplant-071720-015522. PMID 34143647. S2CID 235480018.
  4. ^ Kochhar, S. L.; Gujral, Sukhbir Kaur (2020). "Transpiration". Plant Physiology: Theory and Applications (2 ed.). Cambridge University Press. pp. 75–99. doi:10.1017/9781108486392.006. ISBN 978-1-108-48639-2.
  5. ^ Age-Related Eye Disease Study 2 Research Group (2013). "Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial". JAMA. 309 (19): 2005–15. doi:10.1001/jama.2013.4997. PMID 23644932.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  6. ^ Pinazo-Durán, M. D.; Gómez-Ulla, F; Arias, L; et al. (2014). "Do Nutritional Supplements Have a Role in Age Macular Degeneration Prevention?". Journal of Ophthalmology. 2014: 1–15. doi:10.1155/2014/901686. PMC 3941929. PMID 24672708.
  7. ^ Koo, E; Neuringer, M; Sangiovanni, J. P. (2014). "Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration". American Journal of Clinical Nutrition. 100 (Supplement 1): 336S–346S. doi:10.3945/ajcn.113.071563. PMC 4144106. PMID 24829491.