Zsigmondy's theorem

In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if are coprime integers, then for any integer , there is a prime number p (called a primitive prime divisor) that divides and does not divide for any positive integer , with the following exceptions:

  • , ; then which has no prime divisors
  • , a power of two; then any odd prime factors of must be contained in , which is also even
  • , , ; then

This generalizes Bang's theorem,[1] which states that if and is not equal to 6, then has a prime divisor not dividing any with .

Similarly, has at least one primitive prime divisor with the exception .

Zsigmondy's theorem is often useful, especially in group theory, where it is used to prove that various groups have distinct orders except when they are known to be the same.[2][3]

  1. ^ A. S. Bang (1886). "Taltheoretiske Undersøgelser". Tidsskrift for Mathematik. 5. 4. Mathematica Scandinavica: 70–80. JSTOR 24539988. And Bang, A. S. (1886). "Taltheoretiske Undersøgelser (continued, see p. 80)". Tidsskrift for Mathematik. 4: 130–137. JSTOR 24540006.
  2. ^ Montgomery, H. "Divisibility of Mersenne Numbers." 17 Sep 2001.
  3. ^ Artin, Emil (August 1955). "The Orders of the Linear Groups". Comm. Pure Appl. Math. 8 (3): 355–365. doi:10.1002/cpa.3160080302.